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A stationary hypersonic flow past an arbitraty body is considered ; both a drag
and a lift are applied to this body, The viscosity and thermal conductivity of
the gas are neglected, The solution of Euler's equations for large distances from
the body is represented in the form of three terms of an asymptotic expansion,
An analogy is formulated which permits the parameters of the stream to be found
from the solution of the problem of a strong “"cord" blast (produced by a longhigh-
ly concentrated explosive charge), when not only energy is imparted to the gas,
but also a momentum is applied to it perpendicularly to the direction of the cord,

1, The form of solution for a — oo. Let us consider a stationary hyper-
sonic flow about an arbitrary body. Let P be the gas density in the oncoming stream,
v the gas velocity directed along the 2 -axis of the cylindrical system of coordinates
x,r, . We assume that ahead of the bow shock wave the presswre p., == 0 and con-
sequently, the Mach number M == co. The gas is assumed to be perfect,i, e, to con-
form to the Clapeyron equation of state; furthermore, we take the two specific heats ¢,
and c, to be constant and their ratio equal to ®. The viscous friction stress and heat
transfer in the gas are neglected, It is convenient to assume that the values of the inde-
pendent variables and of the unknown functions are dimensionless and to take (O, Voo
and r, as the fundamental reference units; r, is the characteristic radius of curvature
of the shock front,

At some distances from the body the shape of the compression shock s (z) is essen-
tially determined by the wave drag, A known analogy [1 — 4] compares the hypersonic
stream to the unsteady motion inaspace of one less dimension, Within the framework
of this analogy the velocity field associated with the drag of a body can be obtained by
solving the problem of a strong explosion [5 — 9], It follows from Sedov's law [10 — 117,
established for blast waves, that for hypersonic fiows rs ~ 212,

Let us assume that the flow past the body produces not only the drag but also a lift
F,. Henceforth the polar angle ¢ will be measwred from the y -axis situated in the plane
z == const, As in the case of plane-parallel flows [12], we assume that in the expansion
for the shock front the term associated with the lift is small compared with the fundam-
ental term depending on the drag, The form of the correction term must satisfy the ob-
vious condition that the value of the lift must not depend on the choice of the control
sections Z = const (ahead or behind the body) for the computation of the gas momen-
tum component passing through these along the y-axis, As will be shown below this con-
dition will be fulfilled if

rs = (bx)": (1 4- byx~"lnzcosgp -+ ...) (1.1)

Let us denote by ¥, 2, and ¥, the projections of the velocity vector on the axes z,r
and . We seek the expansion for the parameters of the gas in the region behind the
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compression shock in the form

ve =1 — g e B by I (B) + (1.2)
Uy13 (E)] cos @ + }

v=3 jr 1 ( ) (00 B) - by [0 20,20 () Dy () c05 9 + )
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p= )(K‘H) L o1 (® + byt [In pia (8) + pus (B) cos @ + ...}

r
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Substituting formulas (1,2) in Euler's equations which we omit here for the sake of
brevity, we obtain three systems of ordinary differential equations. The nonlinear system
of first approximation solves the problem of a strong cord blast [10, 11], This solution
imposes the introduction of the self-similar combination £ as one of the independent
variables, The second approximation system is linear and homogeneous
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The third approximation system is also linear but nonhomogeneous, the functions of the
first and second approximations are present in the right-hand side of the equation

dvr +1 dp dp 0
LT

dU?‘ vr K+1 P :
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% de,
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%41 dvr 1
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It is obvious that the last of equations (1, 3) and (1, 4) are different from the remaining
and determine the perturbations .y, and v,;3 of the longitudinal component of the
velocity vector, after the remaining parameters 2,45, . . ., pyo and ¥pyg, - - -5 P13
have been found, These two groups of parameters conform to the system of equations
which arise in the investigation of the second and third approximations in the theory of
the two-dimensional nonstationary motion of a perfect gas, Hence, it is possible to con-
struct the velocity fieldatlarge distances from the body and with a given accuracy ;the
principle of equivalence [1 — 4] is applied here according to which the computation of
the stream in an arbitrary plane g — const is performed independently of the results
of calculations for other planes,

The Rankine-Hugoniot conditions for the shock wave front (1,1) permit the Cauchy
problem to be formulated for any of the considered systems of linear equations, We
must begin their integration from the point § = 1, where, respectively,

Uye = — dogp/dl, ¥p9 = — dvpyy/dE, V1 = 1 (1, 5)
P2 = — dpy/dE, pip = — dpy/dE
Cag = 4, Upz = 2, Vg == 0, p1g = 0, p1s =4 (1. 6)

2, Calculation of the 1ift, By a direct check it is possible toascertain that
the solution of the system (1, 5) that satisfies the initial conditions (1, 5) has the form
Vpge = — doen/dE, Ve = — dv/dE, vgyp = vr/8 (2.1)

P12 = — dpy/d§, pyp = — dpy/d§

The existence of this simple solution is due to the group properties of the initial Euler’s
equations, They are invariant, particularly with respect to the displacement along all
three axes of the Cartesian system of coordinates, Let us replace r = |/ y® + 2% by
= V¥ (y + Ay)® + 2% in Sedov's solution for a strong cord blast and assume that

Ay <€ Y. We expand the relations obtained in this way in series and restrict ourselves
to terms of the first order with respect to Ay. Their coefficients are proportional to
xz~*: and contain the functions of the self-similar variable { which are given by the
formulas (2, 1), Hence, the reason for introducing the logarithmic terms into the asymp-
totic representations (1, 1) and (1, 2) for the compression shock and for the parameters
of gas behind the shock, becomes obvious, If we omit these terms and set the value
byx~"+ cosp instead of the points in the right-hand side of (1, 1), then the perturbations
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in the basic solution will be of the order of Z~"+ for & —00 . The right-hand sides of
Egs. (1. 4) vanish and the initial data for the functions v, . . ., P13 will be determ-
ined by the relations (1, 5) and not by (1,6),
As a result, the formulas (2, 1) will give the

solution of the equations for the third appro-
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tem of coordinates, The possibility of such a shift permits the term proportional to =
to be eliminated from the asymptotic representation (1, 1) of the shock front,

Let us consider the system of equations (1, 1) for the functions of the third approxima-
tion, As noted above, the front of the expansion (1, 2) was chosen in order to obtain a
finite value for the 1ift by calculating the y-component of the gas momentum transferred
through a closed control surface placed at a sufficiently large distance from the body,
This allows us to write the integral of the considered system [13], Taking into account
the formulas (2, 1), we have

®+1

1
<2Ur11 — "i‘—;— E) P11Vr13 — (Uru — E.) P11Ve1s + (2.2)

W —

1 1 C
(Urll - sz_— E) V11013 + 5— P13 = v + (¢ 4+ 1) v100

To calculate the constant C we use the initial data (1,6) and as a result we obtain

C = 0. Let us now represent the function V13 by the remaining unknown quantities
using the integral (2, 2), In the system (1, 4) one of the first three equations is dependent
on the other two, therefore it can be omitted, It is convenient to integrate the system
numerically, It was assumed in the calculations that the Poisson's adiabatic exponent

# = 1.4. The curves of the components v,;, and v,;; of the perturbed velocity vec-
tor, of the excess density p,, and the excess pressure p,, are given in Fig, 1, For § — 0
all these functions have an oscillatory character, but as 2,5 and v,,3 increase infinitely,
P13 and p;3 tend to zero,

We set two control planes normal to the direction of the oncoming stream, Let one of
them be placed in the stream in front of the body, and the other behind it at a distance
z. We write the expression for the lift Ts2n

F,=— IimS S ov v, 1 dr d

=05 o
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Substituting here the expansions (1,2) and retaining all terms upto and including that of
the order of 2°, we have
T

Fy=— 250", [(1 +1)lnx+ hg; 1, (8)]

[

I, = \ (P11Vr12 + VrnaPrz — PraVerz) BdE
0
1

I,(8) = S(Puvrm + VriP1s — Priers) 5E
g

It is easy to compute the integral [, bearing in mind the solution (2, 1) for the func-
tions of the second approximation, In fact,
1
I, = d dE
1= — —dz(l’rupng) == —1
o
As a result we obtain the following expression for the lift

I 31y .
Fy= =5 p b lim 1, @ (2. 3)

The behavior of the integral /, (&) can be seen in Fig, 2, In spite of the infinite increase
of the components z,;, and 2,,; of the perturbed velocity vector for § — 0 , this in-
tegral tends to a finite value 7,(0) — 0.2775. A rigorous proof of the convergence of
I, (£) will be given in Sect, 3, following the analysis of the asymptotic behavior of the
third approximation functions,

Let us consider the dependence of the solution we have constructed on the angular va-
riable, The addition to the correction terms in the expansions (1,1) and (1, 2) of the
terms containing sing, results in the appearance of a lateral force F, which (beside the
lift) acts on the body in the plane normal to the direction of the oncoming stream, The
computation of /- is exactly analogous to that of /. The additional correction terms
containing higher harmonics coskg and sinkg (k = 2,3, .. .) can also be chosen
proportional to z™":, but they do not contribute to the forces, For these reasons in the
Fourier series which represent the dependence of the gas parametrs on the angular vari-
able, only the terms with cosq were retained right from the beginning,

As was mentioned above, the functions v,y3, . . ., P12 and v.y5, . . ., P are deter-
mined by the system of equations which obtain in the analysis of higher approximations
in the theory of the two-dimensional motion of a perfect gas, and are a little different
from the self-similar ones, It follows from the results of [13] that the integral (2. 2) ex-
ists only in the case when the expression for the momentum of the matter inside the per-
turbed region of nonstationary flow, contains components which do not vary with time,
In a stationary hypersonic stream the time is represented by the longitudinal coordinate
z and the momentum is represented by the lift /7. Hence, it is obvious that in each
plane x = const the parameters of the hypersonic stream for an arbitrary body which
is under the action of drag and lift, can be found from the solution of the problem of a
strong cord blast when not cnly energy is transferred to the gas, but also a momentum
normal to the cord direction (along the y-axis), The analogy with a blast, which shows
the relation between the energy emitted per unit of the cord length and the drag of the
body, has been known for a long time [5— 9]. Using the formulation given above, this
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analogy permits us to compare the momentum per unit length of the blast wave and the
lift applied to the body in a hypersonic stream,

3, Asymptotics of the functions of the third approximation for
% —> 0. The behavior of the second approximation functions for £ — O can be deter-
mined by formulas (2, 1), substituting into their right-hand sides the known asymptotic
expansion of the solution of the problem of a strong cord blast [14], Let us clarify the
behavior of the functions of the third approximation, To do this we revert to the system
of equations (1, 4), without first using the simplifications related to the existence of the
integral (2.2), As a result, for the first linearly independent solution of the homogeneous
system corresponding to (1, 4), we have

b ke o -
Vs1s —c — k122 E (3%+1)/(%~1) (3.1)
1 —2%) (%2 —1) ¢ —
Vs Cl( 4“;1 )g 2% [ (%-1) ...
1 —2x%) (v 4 1) = —
Up13 = €y Lot AP 43;1 ) g /Cen + ...

- — 2
Pis=0834 ..., Ppu=¢ —(%@%})—3?1 +...

The second of the linearly independent solutions is taken in the form

K o(axi1) /x
Uxyy = —62%—1—1/722& @D o5 (k InE) - ... (3.2)
vysa = — g S onI6) o0 (1 §) 4 ksin (kIn B)] + ...

Veiz = €3

% 1) (w —1)2 E_x/(x_l) [ 2—x%

Ak w— cos(kIng) —

2 sin(kIn g)] + ...
P13 = EF PV eos (kInE) + ...

po = U [ L cnu1nd ki .

We write the third linearly independent solution in the form

ko «_(2x *x-1) -
%—T—i k—;’g(z W Dgin (kInk) + ... (3.3)

Uxig = — C3

1 — /(e
Ur]3:csw g/ 1)[lccos(kInE)~sin(lcln§,)] 4 ..
1 —1)2 -%/(%x—
Vo1 == C3 Lk D0 1) 4)%(,2 ) gx/en [———nﬂfi cos (kInE) -
2—x% ’
n—1

sin (k Ing)_l + ...

P13 = c3§(3—zx)/("~1) sin (kIn&) 4- ...
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(12— 1) o1, e
%—“3%2“ ) gl [k cos(kIng) —

%sin(kln&)] + ..
E=VE =%/ /x—1D

Pis= —¢3

Here k%, and k, are the coefficients of the leading terms in the expansions of the func-
tions 0y; and py; from the problem on a strong explosion ; their values can be found in
the monograph of Sedov [14], The fourth linearly independent solution of a homogene-
ous and the partial solution of a nonhomogeneous system of Eqs, (1,4) bring some con-
tribution only to the lower order terms in the asymptotic representation of the functions
Tx13, - - -» P13 for & — ( ; therefore they are not quoted,

If the constant ¢; = 0, then the estimate for the integrand in the right-hand side of
the formula (2, 3) is given by

. ~1
(01vrs + TruPrs — Pt @;3)?:"’ e

Hence, it is clear that for £ — ( for the convergence of the integral 7, (§) to the
finite limit /, (0) , it is necessary to satisfy the condition ¢, -= (. Now we shall use
the equality (2, 2) which defines the relation between the functions of the third approxi-
mation, As follows from simple computations ¢, == (', but the constant C == () ac-
cording to Cauchy's data (1, 6), Lowering the order of the system of equations (1,4)

from the fourth to the third which was obtained by excluding the quantity ;3 from it,
permitted in Sect, 2 the solution resulting in the disappearance of the asymptotics (3,1)
to be at once constructed, Since the asymptotics{3,2)and(3,3) whichrepresentsubsequent
terms of the expansion ensure the convergence of the integral /,(E), the computations
yielded the final value /,(0) = 0.2775. Thus, for % = 1.4 the lift of the body

F, = —0.6241 b'b,

As for the constants ¢, and ¢y, numerical integration of the system of equations (1, 4)
after the elimination of function vy yields ¢, == 0.085 and ¢;3 = — 0.978,

Asymptotic expansions confirm that for £ -.( all the third order functions have an
oscillatory character, The period [, — (e?"/% — 1) vanishes with the self-similar
variable £, i, e, the oscillation frequency o increasesastheaxis r= () isapproached, The
amplitude of oscillations of the components of the perturbed velocity vector is determ-
ined by the behavior of the quantities xy3, Ur1s and @, ; it increases infinitely, while
the amplitude of oscillations of the excess pressure p,, decreases to zero, Oscillations
of the excess density p,, vary with the Poisson's adiabatic exponent; for x<C 1,5
their amplitude diminishes and for ® ~> 1,5 increases infinitely,

For r = const and x — oo the self-similar variable % — (. Hence, the parame-
ters of the gas oscillate not only near the axis 7 = 0 but also downstream at any fixed
distance from the axis, In this case the oscillation frequency ® ~ x'/2.
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