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A stationary hypersonic flow past an arbitraty body is considered ; both a drag 

and a lift are applied to this body. The viscosity and thermal conductivity of 

the gas are neglected. The solution of Euler’s equations for large distances from 

the body is represented in the form of three terms of an asymptotic expansion. 
An analogy is formulated which permits the parameters of the stream to be found 
from the solution of the problem of a strong “cord” blast (produced by a long high- 

ly concentrated explosive charge), when not only energy is imparted to the gas, 

but also a momentum is applied to it perpendicularly to the direction of the cord. 

1. The form of rolution for x -+ 30. Let us consider a stationary hyper- 

sonic flow about an arbitrary body. Let pm be the gas density in the oncoming stream, 
ZJ, the gas velocity directed along the CI: -axis of the cylindrical system of coordinates 
x, r, cp. We assume that ahead of the bow shock wave the pressure po;: = 0 and con- 

sequently, the Mach number M,,, = m. The gas is assumed to be perfect, i. e. to con- 
form to the Clapeyron equation of state ; furthermore, we take the two specific heats cp 

and c, to be constant and their ratio equal to x. The viscous friction stress and heat 
transfer in the gas are neglected. It is convenient to assume that the values of the inde- 

pendent variables and of the unknown functions are dimensionless and to take Pm, u, 
and r* as the fundamental reference units; r* is the characteristic radius of curvature 

of the shock front. 
At some distances from the body the shape of the compression shock rS (x) is essen- 

tially determined by the wave drag. A known analogy [l - 41 compares the hypersonic 
stream to the unsteady motion ina space of one less dimension. Within the framework 
of this analogy the velocity field associated with the drag of a body can be obtained by 
solving the problem of a strong explosion [5 - 91. It follows from Sedov’s law [lo - 111, 
established for blast waves, that for hypersonic flows rg - ~‘1~. 

Let us assume that the flow past the body produces not only the drag but also a lift 
F,. Henceforth the polar angle cp will be measured from the IJ -axis situated in the plane 

x == const,. As in the case of plane-parallel flows [ 121, we assume that in the expansion 
for the shock front the term associated with the lift is small compared with the fundam- 
ental term depending on the drag. The form of the correction term must satisfy the ob- 
vious condition that the value of the lift must not depend on the choice of the control 
sections 5 = const, (ahead or behind the body) for the computation of the gas momen- 
tum component passing through these along the y-axis. As will be shown below this con- 

dition will be fulfilled if 

rS = (bx)‘iz (1 A- D~,X-‘~2111XCOS(p + . . .) (1.1) 

Let us denote by zJ5, z’, and U, the projections of the velocity vector on the axes x, I’ 

and cp. We seek the expansion for the parameters of the gas in the region behind the 
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compression shock in the form 

z;, = I -_ 1 
L- {n,rl (E) + hr,+~z On xux12 (E) + 2(x+1) z 

0.2) 

7Jx13 (91 cos cp i-*.-j 
1 b ‘119 

%=q-j- -y i 1 {V,U (9 + b?Jx-‘/2 Iln xu,12 (9 + u,13 @I ~0s cp + ...) 
1 

Uq== 2 
” b-“‘b, { [] nxu,t, 6) + k3 (01 since + ...} 

Q= 
x+1 
x {Pi, + 4,x+ Unw2(E) + ~1~ @I COST + . ..) 

1 
p= Z(Xi_l) z b {pll (E) 4 bl,x-“z [In ~~12 (8 + ~1~ (Dl cos cp + . ..) 

Substituting formulas (1.2) in Euler’s equations which we omit here for the sake of 
brevity, we obtain three systems of ordinary differential equations. The nonlinear system 
of first approximation solves the problem of a strong cord blast [lo, 111. This solution 
imposes the introduction of the self-similar combination E as one of the independent 
variables, The second approximation system is linear and homogeneous 

PII 3 + (6r31 -YE)% +(2 _t++& (1.3) 

i 

dl, 
i-11 x+1 _++__+)12+!+!L0 

dfz 

i 
ur11 - + g) PI1 * + + 2 + ($--v. - l)p,lv,12+ 

I( 
U,ll - qq * - * v,ll] I'72 -- 0 

( 
u Ill 

_+ g+ z?$L+ +L +(+L -_x-_)pl,v,,2=o 

xp,, * + (/7,11 - * 5) J$ -t (* +- 3c + 
) 

UT12 + 

x. ( d>;l j y’ ) p12 + x yJ12 = 0 

1 v -- 
.\12-- K+l ( 

2v,l174.12 -j- x z - x s 
) 

The third approximation system is also linear but nonhomogeneous, the functions of the 
first and second approximations are present in the right-hand side of the equation 

Pll * + (Ull -*g++ (zg + !+, + (1.4) 

( = -(x 4 1)PlZ 
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xp11 * + (vrll - y- sj% + (2 + 1c +) u,.13 + 

! 

dv 
r11 VI.11 

x- - 
4 + E 

p13 +x yL 
-(x + l)Pl2 

1 
U,13 == 

x -t 1 ( 2v r11Url3 + x E - +g 
) 

It is obvious that the last of equations (1.3) and (1.4) are different from the remaining 

and determine the perturbations zj,,, and v,., of the longitudinal component of the 
velocity vector, after the remaining parameters ~)~i~, . . ., p12 and uri3, . . ., p13 
have been found. These two groups of parameters conform to the system of equations 
which arise in the investigation of the second and third approximations in the theory of 
the two-dimensional nonstationary motion of a perfect gas. Hence, it is possible to con- 
struct the velocity field at large distances from the body and with a given accuracy ;the 
principle of equivalence [ 1 - 41 is applied here according to which the computation of 
the stream in an arbitrary plane 5 = const is performed independently of the results 
of calculations for other planes. 

The Rankine-Hugoniot conditions for the shock wave front (1.1) permit the Cauchy 

problem to be formulated for any of the considered systems of linear equations. We 
must begin their integration from the point E = 4, where, respectively, 

2. Calculation of the lift. By a direct check it is possible to ascertain that 

the solution of the system (1.5) that satisfies the initial conditions (1.5) has the form 

V x12 = - d~x,lldh 27,12 = - h-&L ~12 = v,,,lE 

P 12 = - &GE, ~12 = - dpll& 

(2.1) 

The existence of this simple solution is due to the group properties of the initial Euler’s 
equations. They are invariant, particularly with respect to the displacement along all 
three axes of the Cartesian system of coordinates. Let us replace r = -[yz + za by 

r I= J’ (Y + A@ + 9 in Sedov’s solution for a strong cord blast and assume that 
Ay < y. We expand the relations obtained in this way in series and restrict ourselves 
to terms of the first order with respect to Ay. Their coefficients are proportional to 
5-12 and contain the functions of the self-similar variable E which are given by the 
formulas (2.1). Hence, the reason for introducing the logarithmic terms into the asymp- 
totic representations (1.1) and (I. 2) for the compression shock and for the parameters 
of gas behind the shock, becomes obvious. If we omit these terms and set the value 
by~-‘,z coscp instead of the points in the right-hand side of (1.1). then the perturbations 
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in the basic solution will be of the order of X-‘fa for X -+-oo . The right-hand sides of 
Eqs. (1.4) vanish and the initial data for the functions ~~.a, . . ., p13 will be determ- 

Fig. 1 

ined by the relations (1.5) and not by (1.6). 

As a result, the formulas (2.1) will give the 
solution of the equations for the third appro- 
ximation. It follows from the reasons given 
above that in this case the sum of the funda- 
mental and the correction terms in the ex- 

pansion (1.2) represents an approximate solu- 

tion of the problem of strong blast with the 
symmetry axis shifted in the plane xy paral- 
lel to the axis r = 0 in the cylindrical sys- 

tern of coordinates. The possibility of such a shift permits the term proportional to x-‘~~ 
to be eliminated from the asymptotic representation (1.1) of the shock front. 

Let us consider the system of equations (1.1) for the functions of the third approxima- 
tion. As noted above, the front of the expansion (1.2) was chosen in order to obtain a 
finite value for the lift by calculating the y-component of the gas momentum transferred 

through a closed control surface placed at a sufficiently large distance from the body. 
This allows us to write the integral of the considered system [13]. Taking into account 
the formulas (2. l), we have 

( 2v rll - w 5) P11Ur13 -(&11 - * E)Pll%l3 + 
(2.2) 

( 
-qq 

x-l 
ur11 Vr11P13 t- 2 P13 =-f +tx + w4dJll 

To calculate the constant C we use the initial data (1.6) and as a result we obtain 

c = 0. Let us now represent the function Qs by the remaining unknown quantities 
using the integral (2.2). In the system (1.4) one of the first three equations is dependent 
on the other two, therefore it can be omitted. It is convenient to integrate the system 

numerically. It was assumed in the calculations that the Poisson’s adiabatic exponent 
x = 1.4. The curves of the components vr13 and vQ13 of the perturbed velocity vec- 
tor, of theexcess density pia and the excess pressure p13 are given in Fig. 1. For E --t 0 
all these functions have an oscillatory character, but as z~,~a and vV1, increase infinitely. 
prs and p13 tend to zero. 

We set two control planes normal to the direction of the oncoming stream. Let oneof 

them be placed in the stream in front of the body, and the other behind it at a distance 
X. We write the expression for the lift t‘s 2x 

F, = -hii \ pv,vbr drdq 
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Substituting here the expansions (1.2) and retaining all terms up to and including that of 
the order of x0, we have 

12 (9 = s (P 11ur13 + ~,llPl, - Pllb13)~d~ 

4 

It is easy to compute the integral 1, bearing in mind the solution (2.1) for the func- 
tions of the second approximation, In fact, 

1, = - l& (vriip& dE = - 1 
s 
0 

As a result we obtain the following expression for the lift 

F, = - -&- b3”bU lim I, (Q 
C.--o 

(2.3) 

The behavior of the integral 1, (E) can be seen in Fig. 2. In spite of the infinite increase 

of the components r,is and uW1a of the perturbedvelocity vector for g -+ 0 , this in- 

tegral tends to a finite value I,(O) ;_ 0.2775. A rigorous proof of the convergence of 
1, (E) will be given in Sect. 3, following the analysis of the asymptotic behavior of the 

third approximation functions. 
Let us consider the dependence of the solution we have constructed on the angular va- 

riable. The addition to the correction terms in the expansions (1.1) and (1.2) of the 
terms containing sincp, results in the appearance of a lateral force F, which (beside the 

lift) acts on the body in the plane normal to the direction of the oncoming stream. The 

computation of F, is exactly analogous to that of F,. The additional correction terms 

containing higher harmonics COS&I and sin/iv (h- L 2,3, . . .) can also be chosen 
proportional to x-“‘2, but they do not contribute to the forces. For these reasons in the 

Fourier series which represent the dependence of the gas parametrs on the angular vari- 
able, only the terms with COST were retained right from the beginning. 

As was mentioned above, the functions cri2, . . ., pla and Asia, . . ., p13 are deter- 
mined by the system of equations which obtain in the analysis of higher approximations 

in the theory of the two-dimensional motion of a perfect gas, and are a little different 

from the self-similar ones. It follows from the results of [13] that the integral (2.2) ex- 
ists only in the case when the expression for the momentum of the matter inside the per- 
turbed region of nonstationary flow, contains components which do not vary with time. 
In a stationary hypersonic stream the time is represented by the longitudinal coordinate 

J: and the momentum is represented by the lift J’,,. Hence, it is obvious that in each 

plane J: = const the parameters of the hypersonic stream for an arbitrary body which 
is under the action of drag and lift, can be found from the solution of the problem of a 
strong cord blast when not only energy is transferred to the gas. but also a momentum 
normal to the cord direction (along the y-axis). The analogy with a blast, which shows 
the relation between the energy emitted per unit of the cord length and the drag of the 
body, has been known for a long time [5 - 93. Using the formulation given above, this 
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analogy permits us to compare the momentum per unit length of the blast wave and the 
lift applied to the body in a hypersonic stream. 

3. Aaymptotio of the function8 of the third approximation for 
g + 0. The behavior of the second approximation functions for E + 0 can be deter- 
mined by formulas (2. l), substituting into their right-hand sides the known asymptotic 

expansion of the solution of the problem of a strong cord blast [14]. Let us clarify the 
behavior of the functions of the third approximation. To do this we revert to the system 
of equations (1.4), without first using the simplifications related to the existence of the 
integral (2.2). As a result, for the first linearly independent solution of the homogeneous 
system corresponding to (1.4), we have 

x k-z 
V x13 = -- Cl 

~-_(3w(x-l) 

x+1 k1‘J 
+ . . . 

V r13 = c1 
(1 - 2x) (x2 - 1) -2X/(X-l) 

4xkl E f... 

V 913 = cl 
(1 -2x) (x + 1)3 -m/(x-1) 

4xkl E f... 

p13=c1p+..., p13=c1 (1-22x)(x+1)3 E-l+... 
4x2 (X -- 1) 

(3.1) 

The second of the linearly independent solutions is taken in the form 

x 
V x13 = 

_ c2 
kz p=w /(X-l) 

x + 1 kP 
cos(klnQ + . . . (3.2) 

V r13 = - cz ix + '4',',: - I" EMx'(x-l) [cos (k In E) + k sin (k In E)] + . . . 

v ~p13 = c.2 (x + 1) (x - 1J2 ~-w-l) 
4xkl II 

s cos(k lnE)- 

Lsin(klnQ] + . . . X-l 

pI3 = c&,(3-2K)‘(X-1) co.7 (k In E) + . . . 

P13 = (_* (x + IF (x - 1) 
2x2 E’ i(X-l) xcos(klnQ +ksin(kInQ] +... x -- 1 

We write the third linearly independent solution in the form 

x 
V x13 = - C3 - 2% ~d-(zx+l)~(x-l) sin (k In ,t) + ... 

x+ 1 kls 

v r13 = c3 
lx + 1) (x - 1)s px-1) 

4xkl [k cos (k In E) - sin (k In Q] + . . . 

L,w13 == c3 (x + 1) (x - I)2 g-x/(x-l) 
4xkl L 

.& cos(k In&k 

ssin(kInE)l + . . . 

(3.3) 



440 O.S.Ryzhov and E.D.Terent'ev 

P13 = - c3 
(x i 1)2(x - 1) t (X-1) 

2x2 E’ 
[ 

k cos (k In EJ - 

~sin(klnE)] + . . . X-i 

k = )/(3 - x) / (x - 1~ 

Here k, and k, are the coefficients of the leading terms in the expansions of the func- 

tions pii and pii from the problem on a strong explosion ; their values can be found in 
the monograph of Sedov [14]. The fourth linearly independent solution of a homogene- 

ous and the partial solution of a nonhomogeneous system of Eqs. (1.4) bring some con- 
tribution only to the !ower order terms in the asymptotic representation of the functions 

7,x13, . * ., 1)13 for E+O; therefore they are not quoted. 
If the constant c1 # 0, then the estimate for the integrand in the right-hand side of 

the formula (2.3) is given by 

(Flit,,, + 7'rnP13 - w.q3) E- c&l 

Hence, it is clear that for E, -+ 0 for the convergence of the integral I, (t) to the 
finite limit I, (0) , it is necessary to satisfy the condition cl ~~- 0. Now we shall use 

the equality (2.2) which defines the relation between the functions of the third approxi- 
mation. As follows from simple computations c i = CT but the constant C == 0 ac- 

cording to Cauchy’s data (1.6). Lowering the order of the system of equations (1.4) 
from the fourth to the third which was obtained by excluding the quantity rQ1s from it, 

permitted in Sect. 2 the solution resulting in the disappearance of the asymptotics (3.1) 

to be at once constructed. Since the asymptotics( 3.2) and( 3.3) which represent subsequent 
terms of the expansion ensure the convergence of the integral 1,(E), the computations 
yielded the final value 1,(O) m= 0.2775. Thus, for x r= 1.4 the lift of the body 

I;!, x -0.Ii241 b”zb!, 

As for the constants ca and c8, numerical integration of the system of equations (1.4) 
after the elimination of function t‘51:1 yields cz =:- 0.085 and cJ = - 0.978. 

Asymptotic expansions confirm that for E -,. 0 all the third order functions have an 
oscillatory character. The period 1; == (ezX, !c - 1) t vanishes with the self-similar 

variable E, i. e. the oscillation frequency o increases as the axis r== (I is approac;hed. The 
amplitude of oscillations of the components of the perturbed velocity vector is determ- 
ined by the behavior of the quantities 1’x13, rrls and rols ; it increases infinitely, while 

the amplitude of oscillations of the excess pressure pi3 decreases to zero. Oscillations 

of the excess density p13 vary with the Poisson’s adiabatic exponent ; for x < 1,s 
their amplitude diminishes and for x > 1,s increases infinitely. 

For r =. const and J: --t cc the self-similar variable g -_t 0. Hence, the parame- 

ters of the gas oscillate not only near the axis r = 0 but also downstream at any fixed 

distance from the axis. In this case the oscillation frequency w - XI/~. 
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